English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis

MPS-Authors
/persons/resource/persons182193

Herzog,  Etienne
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182487

Wojcik,  Sonja M.
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

/persons/resource/persons182104

Brose,  Nils
Molecular neurobiology, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Vinatier, J., Herzog, E., Plamont, M.-A., Wojcik, S. M., Schmidt, A., Brose, N., et al. (2006). Interaction between the vesicular glutamate transporter type 1 and endophilin A1, a protein essential for endocytosis. Journal of Neurochemistry, 97(4), 1111-1125. doi:10.1111/j.1471-4159.2006.0381.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-244E-2
Abstract
In the nerve terminal, neurotransmitter is actively packaged into synaptic vesicles before its release by Ca2+-dependent exocytosis. The three vesicular glutamate transporters (VGLUT1, -2 and -3) are highly conserved proteins that display similar bioenergetic and pharmacological properties but are expressed in different brain areas. We used the divergent C-terminus of VGLUT1 as a bait in a yeast two-hybrid screen to identify and map the interaction between a proline-rich domain of VGLUT1 and the Src homology domain 3 (SH3) domain of endophilin. We further confirmed this interaction by using different glutathione-S-transferase-endophilin fusion proteins to pull down VGLUT1 from rat brain extracts. The expression profiles of the two genes and proteins were compared on rat brain sections, showing that endophilin is most highly expressed in regions and cells expressing VGLUT1. Double immunofluorescence in the rat cerebellum shows that most VGLUT1-positive terminals co-express endophilin, whereas VGLUT2-expressing terminals are often devoid of endophilin. However, neither VGLUT1 transport activity, endophilin enzymatic activity nor VGLUT1 synaptic targeting were altered by this interaction. Overall, the discovery of endophilin as a partner for VGLUT1 in nerve terminals strongly suggests the existence of functional differences between VGLUT1 and -2 terminals in their abilities to replenish vesicle pools.