English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Five amino acids of the Xenopus laevis CRF (corticotropin- releasing factor) type 2 receptor mediate differential binding of CRF ligands in comparison with its human counterpart

MPS-Authors
/persons/resource/persons182098

Brauns,  Olaf
Molecular neuroendocrinology, Max Planck Institute of Experimental Medicine, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dautzenberg, F. M., Higelin, J., Brauns, O., Butscha, B., & Hauger, R. L. (2002). Five amino acids of the Xenopus laevis CRF (corticotropin- releasing factor) type 2 receptor mediate differential binding of CRF ligands in comparison with its human counterpart. Molecular Pharmacology, 61(5), 1132-1139.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-0CAF-8
Abstract
The ligand selectivity of human (hCRF(2A)) and Xenopus laevis (xCRF(2)) forms of the corticotropin-releasing factor type 2 (CRF2) receptor differs. The purpose of this study was to identify amino acids in these two CRF2 receptors conferring these differences. An amino acid triplet in the third extracellular domain (Asp(262)Leu(263)Val(264) in hCRF(2A) or Lys(264)Tyr(265)IIe(266) in xCRF(2)) was found to diverge between both receptors. When binding and signaling characteristics of receptor mutants hR2KYI and xR2DLV were assessed, the tri-amino acid motif replacement produced receptors with binding properties resembling the xCRF(2) receptor. The converse mutation created a mutant receptor with a binding pharmacology identical to the profile of the hCRF(2A) receptor. This effect was most notable for xR2DLV, which possessed a binding affinity for astressin similar to15-fold greater for astressin than sauvagine. In contrast, the binding profiles of the hCRF(2A) receptor and hR2KYI did not differ. These data indicate that another domain of the xCRF(2) receptor mediated low-affinity binding of astressin. Two amino acids in the first extracellular domain differ in xCRF(2) (Asp(69)Ser(70)) and hCRF(2A) (Glu(66)Tyr(67)) receptors. The hCRF(2A) receptor mutant (hR2DS-KYI) bound astressin with a low affinity indistinguishable from the xCRF(2) receptor. Therefore, these data demonstrate that ligand selectivity differences between amphibian and human forms of the CRF2A receptor are governed by these two motifs of the extracellular domains of the xCRF(2) receptor.