English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials

MPS-Authors
/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Selmani, A., Špadina, M., Plodinec, M., Delač Marion, I., Willinger, M. G., Lützenkirchen, J., et al. (2015). An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials. The Journal of Physical Chemistry C, 119(34), 19729-19742. doi:10.1021/acs.jpcc.5b02027.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-4E30-0
Abstract
The present research focuses on the comparative investigation of the acid–base surface properties (the isoelectric point, pHiep and point of zero charge, pHpzc) of one-dimensional TiO2 nanomaterials. Different one-dimensional TiO2 nanomaterials, nanotubes (NTs) and nanowires (NWs) were prepared by an alkaline hydrothermal synthesis procedure. The structural properties of the synthesized TiO2 nanomaterials were investigated with high-resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The NWs and NTs were characterized using Raman and Fourier transform infrared (FT-IR) spectroscopy as well as Brunauer–Emmett–Teller (BET) measurements. Surface properties, i.e. pHiep and pHpzc of NWs and NTs were determined from electrokinetic measurements, potentiometric mass and electrolyte titrations. The relative acidity for the NWs is found to be in the interval 3 < pHiep < 4 in comparison with the NTs, with 4 < pHiep < 6. The observed differences in the relative acidity are correlated with differences in crystal structure of the studied nanomaterials and their resulting morphology. In addition, our results reveal a strong electrolyte effect on the characteristic points, pHiep and pHpzc, especially the higher cation affinity for both TiO2 nanomaterials surfaces that has a significant effect on the pH of the system. Application of the multisite complexation (MUSIC) model yields a satisfactory description of the electrokinetic data and can explain observed salt effect.