Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Family-wide analysis of poly(ADP-ribose) polymerase activity

MPG-Autoren

Vyas,  S.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Matic,  I.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Uchima,  L.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Rood,  J.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Zaja,  R.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Hay,  R. T.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Ahel,  I.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Chang,  P.
Max Planck Institute for Biology of Ageing, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vyas, S., Matic, I., Uchima, L., Rood, J., Zaja, R., Hay, R. T., et al. (2014). Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun, 5, 4426. doi:10.1038/ncomms5426.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-59E9-8
Zusammenfassung
The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.