English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

MPS-Authors
/persons/resource/persons77798

Bracher,  Andreas
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78077

Hauser,  Thomas
Hayer-Hartl, Manajit / Chaperonin-assisted Protein Folding, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78325

Liu,  Cuimin
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78072

Hartl,  F. Ulrich
Hartl, Franz-Ulrich / Cellular Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78078

Hayer-Hartl,  Manajit
Hayer-Hartl, Manajit / Chaperonin-assisted Protein Folding, Max Planck Institute of Biochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

pone.0135448.pdf
(Any fulltext), 8MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Bracher, A., Hauser, T., Liu, C., Hartl, F. U., & Hayer-Hartl, M. (2015). Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii. PLOS ONE, 10(8): e0135448. doi:10.1371/journal.pone.0135448.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0028-514F-8
Abstract
The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large sub-units (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL(8) core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution.