日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory

MPS-Authors

Flick,  Johannes
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21304

Appel,  Heiko
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory, Fritz Haber Institute, Max Planck Society;
Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de F;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Pellegrini, C., Flick, J., Tokatly, I. V., Appel, H., & Rubio, A. (2015). Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Physical Review Letters, 115(9):. doi:10.1103/PhysRevLett.115.093001.


引用: https://hdl.handle.net/11858/00-001M-0000-0028-572C-6
要旨
We propose an orbital exchange-correlation functional for applying time-dependent density functional theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces to the Lamb shift of the ground state energy. We test the new approximation in the Rabi model. It is shown that the OEP (i) reproduces quantitatively the exact ground-state energy from the weak to the deep strong coupling regime and (ii) accurately captures the dynamics entering the ultrastrong coupling regime. The present formalism opens the path to a first-principles description of correlated electron-photon systems, bridging the gap between electronic structure methods and quantum optics for real material applications.