English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microtubule Affinity-regulating Kinase 2 (MARK2) Turns on Phosphatase and Tensin Homolog (PTEN)-induced Kinase 1 (PINK1) at Thr-313, a Mutation Site in Parkinson Disease EFFECTS ON MITOCHONDRIAL TRANSPORT

MPS-Authors
/persons/resource/persons128150

Mandelkow,  E. M.
Neuronal Cytoskeleton and Alzheimer's Disease, Cooperations, Center of Advanced European Studies and Research (caesar), Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Matenia, D., Hempp, C., Timm, T., Eikhof, A., & Mandelkow, E. M. (2012). Microtubule Affinity-regulating Kinase 2 (MARK2) Turns on Phosphatase and Tensin Homolog (PTEN)-induced Kinase 1 (PINK1) at Thr-313, a Mutation Site in Parkinson Disease EFFECTS ON MITOCHONDRIAL TRANSPORT. Journal of Biological Chemistry, 287(11), 8174-8186. doi:DOI 10.1074/jbc.M111.262287.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-62AF-7
Abstract
The kinase MARK2/Par-1 plays key roles in several cell processes, including neurodegeneration such as Alzheimer disease by phosphorylating tau and detaching it from microtubules. In search of interaction partners of MARK2, we identified phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), which is important for the survival of neurons and whose mutations are linked to familial Parkinson disease (PD). MARK2 phosphorylated and activated the cleaved form of PINK1 (Delta N-PINK1; amino acids 156-581). Thr-313 was the primary phosphorylation site, a residue mutated to a non-phosphorylatable form (T313M) in a frequent variant of PD. Mutation of Thr-313 to Met or Glu in PINK1 showed toxic effects with abnormal mitochondrial distribution in neurons. MARK2 and PINK1 were found to colocalize with mitochondria and regulate their transport. Delta N-PINK1 promoted anterograde transport and increased the fraction of stationary mitochondria, whereas full-length PINK1 promoted retrograde transport. In both cases, MARK2 enhanced the effects. The results identify MARK2 as an upstream regulator of PINK1 and Delta N-PINK1 and provide insights into the regulation of mitochondrial trafficking in neurons and neurodegeneration in PD.