English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reversibility of tau-related cognitive defects in a regulatable FTD mouse model

MPS-Authors
/persons/resource/persons94203

Mandelkow,  E.
Neuronal Cytoskeleton and Alzheimer's Disease, Cooperations, Center of Advanced European Studies and Research (caesar), Max Planck Society;

/persons/resource/persons128150

Mandelkow,  E. M.
Neuronal Cytoskeleton and Alzheimer's Disease, Cooperations, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sydow, A., Van der Jeugd, A., Zheng, F., Ahmed, T., Balschun, D., Petrova, O., et al. (2011). Reversibility of tau-related cognitive defects in a regulatable FTD mouse model. Journal of Molecular Neuroscience, 45(3), 432-437.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0028-62C8-D
Abstract
The accumulation of proteins such as Tau is a hallmark of several neurodegenerative diseases, e.g., frontotemporal dementia (FTD). So far, many mouse models of tauopathies have been generated by the use of mutated or truncated human Tau isoforms in order to enhance the amyloidogenic character of Tau and to mimic pathological processes similar to those in FTD patients. Our inducible mice express the repeat domain of human Tau (Tau(RD)) carrying the FTDP-17 mutation Delta K280 in a "pro-aggregant" and an "anti-aggregant" version. Based on the enhanced tendency of Tau to aggregate, only the "pro-aggregant" Tau(RD) mice develop Tau pathology (hyperphosphorylation, coassembly of human and mouse Tau, synaptic loss, and neuronal degeneration). We have now carried out behavioral and electrophysiological analyses showing that only the pro-aggregant Tau(RD) mice have impaired learning/memory and a distinct loss of LTP. Remarkably, after suppressing the pro-aggregant human Tau(RD), memory and LTP recover, while neuronal loss persists. Aggregates persist as well but change their composition from mixed human/mouse to mouse Tau only. The rescue of cognition and synaptic plasticity is explained by a partial recovery of spine synapses in the hippocampus. These results indicate a tight relationship between the amyloidogenic character of Tau and brain malfunction, and suggest that the cognitive impairment is caused by toxic human Tau(RD) species rather than by mouse Tau aggregates