English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Aptamer modules as sensors and detectors

MPS-Authors

Famulok,  M.
External Organizations;
Max Planck Fellow Chemical Biology, Center of Advanced European Studies and Research (caesar), Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Famulok, M., & Mayer, G. (2011). Aptamer modules as sensors and detectors. Accounts of chemical research, 44(12), 1349-58. doi:10.1021/ar2000293.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0028-6426-B
Abstract
Aptamers comprise a range of molecular recognition scaffolds that can be engineered to bind to a legion of different proteins and other targets with excellent specificity and affinity. Because these non-natural oligonucleotides are accessible entirely synthetically, aptamers can be equipped with all sorts of reporter groups and can be coupled to many different carriers, surfaces, nanoparticles, or other biomolecules. They can be used in a highly modular fashion and often recognize their targets by a mechanism in which the aptamer undergoes considerable structural rearrangement, which can be exploited for transducing a binding event into a signal. As a consequence, aptamers have been adapted to a huge variety of "read-out configurations" and are increasingly used as capture agents in many different bioanalytical methods. But despite considerable success with these applications, many remaining challenges must still be overcome for the more widespread incorporation of aptasensors in clinical and environmental biosensing and diagnostics to take place. Some particularly noteworthy progress on this front is currently being made with aptasensor configurations that can be used for the multiplexed sensing of many analytes in parallel. In this Account, we describe some of the concepts involved in transducing the binding of a ligand into a signal through various physico-chemical interactions. Research in this area usually involves the combination of the molecular biology of proteins and nucleic acids with biotechnology, synthetic chemistry, physical chemistry, and surface physics. We begin with a brief introduction of the properties and characteristics that qualify aptamers as capture agents for many different analytes and their suitability as highly versatile biosensor components. We then address approaches that apply to surface acoustic wave configurations, drawing largely from our own contributions to aptasensor development, before moving on to describe previous and recent progress in multiplexed aptasensors. Obtaining proteome-wide profiles in cells, organs, organisms, or full populations requires the ability to accurately measure many different analytes in small sample volumes over a broad dynamic range. Multiplexed sensing is an invaluable tool in this endeavor. We discuss what we consider the biggest obstacles to the broader clinical use of aptasensor-based diagnostics and our perspective on how they can be surmounted. Finally,we explore the tremendous potential of aptamer-based sensors that can specifically discriminate between diseased and healthy cells. Progress in these areas will greatly expand the range of aptasensor applications, leading to enhanced diagnosis of diseases in clinical practice and, ultimately, improved patient care.