Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Generating spike trains with specified correlation coefficients

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21(2), 397-423. doi:10.1162/neco.2008.02-08-713.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-64EF-9
Zusammenfassung
Spike trains recorded from populations of neurons can exhibit substantial pairwise correlations between neurons and rich temporal structure. Thus, for the realistic simulation and analysis of neural systems, it is essential to have efficient methods for generating artificial spike trains with specified correlation structure. Here we show how correlated binary spike trains can be simulated by means of a latent multivariate gaussian model. Sampling from the model is computationally very efficient and, in particular, feasible even for large populations of neurons. The entropy of the model is close to the theoretical maximum for a wide range of parameters. In addition, this framework naturally extends to correlations over time and offers an elegant way to model correlated neural spike counts with arbitrary marginal distributions.