Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The effect of moist convection on thermally induced mesoscale circulations

MPG-Autoren
/persons/resource/persons71719

Rieck,  Malte
Hans Ertel Research Group Clouds and Convection;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rieck, M., Hohenegger, C., & Gentine, P. (2015). The effect of moist convection on thermally induced mesoscale circulations. Quarterly Journal of the Royal Meteorological Society, 141, 2418-2428. doi:10.1002/qj.2532.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-65AC-8
Zusammenfassung
A basic understanding of the mechanisms controlling the characteristics of thermally induced mesoscale circulations rests primarily on observations and model studies of dry convection, whereas the influence of moist convection on these characteristics is not well understood. Large-eddy simulations are used to investigate the effect of moist convection on an idealized mesoscale circulation. Sensitivity studies show that moist convection has a significant influence on the characteristics of the mesoscale circulation. We identify three distinct convective phases that influence the mesoscale circulation within the diurnal cycle: firstly, dry convective onset, with a weak circulation and a breeze front that propagates slowly from the cold region into the warmer fluid as a result of the surface discontinuity; secondly, a deep convective phase, where the circulation intensifies and the breeze front propagates faster; and finally a precipitating phase, where strong cold pools develop at the breeze front and accelerate the propagation speed further. Classical density-current theory fails to represent the second phase and is extended using the cloud-base mass flux to account for the observed effects of moist non-precipitating convection on the propagation speed. We demonstrate the applicability of this theory to the results from large-eddy simulations, identify the subtle role of cold pools on density-current propagation and highlight implications for numerical weather prediction. © 2015 Royal Meteorological Society.