Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evaporative cooling amplification of the entrainment velocity in radiatively driven stratocumulus

MPG-Autoren
/persons/resource/persons59500

de Lozar,  Alberto
Max Planck Research Group Turbulent Mixing Processes in the Earth System, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37262

Mellado,  Juan-Pedro
Max Planck Research Group Turbulent Mixing Processes in the Earth System, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

grl53362.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

de Lozar, A., & Mellado, J.-P. (2015). Evaporative cooling amplification of the entrainment velocity in radiatively driven stratocumulus. Geophysical Research Letters, 42, 7223-7229. doi:10.1002/2015GL065529.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-7F38-C
Zusammenfassung
Evaporative cooling monotonically increases as the thermodynamical properties of the inversion allow for more evaporation in shear-free radiatively driven stratocumulus. However, the entrainment velocity can deviate from the evaporative cooling trend and even become insensitive to variations in the inversion properties. Here the efficiency of evaporative cooling at amplifying the entrainment velocity is quantified by means of direct numerical simulations of a cloud top mixing layer. We demonstrate that variations in the efficiency modulate the effect of evaporative cooling on entrainment, explaining the different trends. These variations are associated with the evaporation of droplets in cloud holes below the inversion point. The parametrization of the efficiency provides the evaporative amplification of the entrainment velocity as a function of a single parameter that characterizes the inversion. The resulting entrainment velocities match our experiments and previous measurements to within ±25%. The parametrization also predicts the transition to a broken-cloud field consistently with observations. ©2015. American Geophysical Union.