Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling

MPG-Autoren
/persons/resource/persons183499

Vasilevskaya,  Tatiana
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)

jcc23977-sup-0001-suppinfo01.pdf
(Ergänzendes Material), 993KB

Zitation

Vasilevskaya, T., Khrenova, M. G., Nemukhin, A. V., & Thiel, W. (2015). Mechanism of proteolysis in matrix metalloproteinase-2 revealed by QM/MM modeling. Journal of Computational Chemistry, 36(21), 1621-1630. doi:10.1002/jcc.23977.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-E2DA-E
Zusammenfassung
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase-2 (MMP-2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all-atom three-dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace-Gln-Gly∼Ile-Ala-Gly-Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four-step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C—N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate-limiting step in MMP-2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations.