Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Nonlinear waves in disordered chains: Probing the limits of chaos and spreading

MPG-Autoren
/persons/resource/persons184363

Bodyfelt,  J. D.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184695

Laptyeva,  T. V.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184972

Skokos,  C.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184675

Krimer,  D. O.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184497

Flach,  S.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bodyfelt, J. D., Laptyeva, T. V., Skokos, C., Krimer, D. O., & Flach, S. (2011). Nonlinear waves in disordered chains: Probing the limits of chaos and spreading. Physical Review E, 84(1): 016205.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-8C7B-3
Zusammenfassung
We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [Europhys. Lett. 91, 30001 (2010)] and consider strong disorder, which favors Anderson localization. We probe the limit of infinite disorder strength and study Frohlich-Spencer-Wayne models. We find that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with spatially inhomogeneous nonlinearity, which give further support to our findings and conclusions.