Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Collapse in the nonlocal nonlinear Schrodinger equation

MPG-Autoren
/persons/resource/persons184750

Maucher,  F.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184974

Skupin,  S.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons184676

Krolikowski,  W.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maucher, F., Skupin, S., & Krolikowski, W. (2011). Collapse in the nonlocal nonlinear Schrodinger equation. Nonlinearity, 24(7), 1987-2001.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-8C85-B
Zusammenfassung
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schrodinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both Lyapunoff's method and virial identities. We find that in the one-dimensional case, i.e. for n = 1, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension n >= 2 and singular kernel similar to 1/r alpha, no collapse takes place if a < 2, whereas collapse is possible if alpha >= 2. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of similar to 1/r(2) kernels for n = 3. Moreover, different evolution scenarios for the three-dimensional physically relevant case of Bose-Einstein condensates are studied numerically for both the ground state soliton and higher order toroidal states with, and without, an additional local repulsive nonlinear interaction. In particular, we show that the presence of local repulsive nonlinearity can prevent collapse in those cases.