English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!Release HistoryDetailsSummary

Discarded

Paper

Lifting of Multicuts

MPS-Authors
/persons/resource/persons98382

Andres,  Björn
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

/persons/resource/persons180806

Fuksova,  Andrea
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

/persons/resource/persons201523

Lange,  Jan-Hendrik
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(No access)

Supplementary Material (public)
There is no public supplementary material available
Citation

Andres, B., Fuksova, A., & Lange, J.-H. (2016). Lifting of Multicuts. Retrieved from http://arxiv.org/abs/1503.03791.


Abstract
For every simple, undirected graph $G = (V, E)$, a one-to-one relation exists between the decompositions and the multicuts of $G$. A decomposition of $G$ is a partition $\Pi$ of $V$ such that, for every $U \in \Pi$, the subgraph of $G$ induced by $U$ is connected. A multicut of $G$ is an $M \subseteq E$ such that, for every (chordless) cycle $C \subseteq E$ of $G$, $|M \cap C| \neq 1$. The multicut related to a decomposition is the set of edges that straddle distinct components. The characteristic function $x \in \{0, 1\}^E$ of a multicut $M = x^{-1}(1)$ of $G$ makes explicit, for every pair $\{v,w\} \in E$ of neighboring nodes, whether $v$ and $w$ are in distinct components. In order to make explicit also for non-neighboring nodes, specifically, for all $\{v,w\} \in E'$ with $E \subseteq E' \subseteq {V \choose 2}$, whether $v$ and $w$ are in distinct components, we define a lifting of the multicuts of $G$ to multicuts of $G' = (V, E')$. We show that, if $G$ is connected, the convex hull of the characteristic functions of those multicuts of $G'$ that are lifted from $G$ is an $|E'|$-dimensional polytope in $\mathbb{R}^{E'}$. We establish properties of trivial facets of this polytope.