Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Can impaired working memory functioning be improved by training?: A meta-analysis with a special focus on brain injured patients

MPG-Autoren
/persons/resource/persons23009

Weicker,  Juliane
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
University of Leipzig, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Weicker, J., Villringer, A., & Thöne-Otto, A. (2016). Can impaired working memory functioning be improved by training?: A meta-analysis with a special focus on brain injured patients. Neuropsychology, 30(2), 190-212. doi:10.1037/neu0000227.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0028-F1C1-D
Zusammenfassung
Objective: Deficits in working memory (WM) are commonly observed after brain injuries and cause severe impairments in patients’ everyday life. It is still under debate if training can enhance or rehabilitate WM in case of malfunction. The current meta-analysis investigates this issue from a clinical point of view. It addresses under which conditions and for which target group WM training may be justifiable. Method: Relevant WM training studies were identified by searching electronic literature databases with a comprehensive search term. In total, 103 studies, which added up to 112 independent group comparisons (N = 6,113 participants), were included in the analysis.
Results: Overall, WM training caused a moderate and long-lasting improvement in untrained WM tasks. Moreover, improvement of WM
functioning led to sustainable better evaluation of everyday life functioning, however, effect sizes were small. Concerning transfer effects on other cognitive domains, long-lasting improvements with small effect sizes were observed in cognitive control and reasoning/intelligence. In contrast, small immediate, but no long-term effects were found for attention and long-term memory. Studies with brain injured patients demonstrated long-lasting improvements in WM functions with moderate to large effect sizes. A main moderator variable of intervention efficacy is the number of training sessions applied. Conclusion: WM training produces long-lasting beneficial effects which are strongly pronounced in patients with acquired brain injuries. This finding supports the application of WM training in clinical settings. To determine optimal training conditions, future studies must systematically investigate the characteristics of interventions as they are at present inevitably confounded.