Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Correlation of topographic surface and volume data from three-dimensional electron microscopy

MPG-Autoren
/persons/resource/persons92675

Dimmeler,  Eva
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dimmeler, E., Marabini, R., Tittmann, P., & Gross, H. (2001). Correlation of topographic surface and volume data from three-dimensional electron microscopy. Journal of Structural Biology, 136(1), 20-29. doi:10.1006/jsbi.2001.4422.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-E64C-A
Zusammenfassung
Three-dimensional(3D) reconstructions from tilt series in an electron microscope show in general an anisotropic resolution due to an instrumentally limited tilt angle. As a consequence, the information in the z direction is blurred, thus making it difficult to detect the boundary of the reconstructed structures. In contrast, high-resolution topography data from microscopic surface techniques provide exactly complementary information. The combination of topographic surface and volume data leads to a better understanding of the 3D structure. The new correlation procedure presented determines both the height scaling of the topographic surface and the relative position of surface and volume data, thus allowing information to be combined. Experimental data for crystalline T4 bacteriophage polyheads were used to test the new method. Three-dimensional volume data were reconstructed from a negatively stained tilt series. Topographic data for both surfaces were obtained by surface relief reconstruction of electron micrographs of freeze-dried and unidirectionally metal-shadowed polyheads. The combined visualization of volume data with the scaled and aligned surface data shows that the correlation technique yields meaningful results. The reported correlation method may be applied to surface data obtained by any microscopic technique yielding topographic data.