Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure of a genetically engineered molecular motor

MPG-Autoren
/persons/resource/persons93802

Kliche,  Werner
Emeritus Group Bioorganic Chemistry, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92982

Fujita-Becker,  Setsuko
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93843

Kollmar,  Martin
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94215

Manstein,  Dietmar J.
Dietmar Manstein Group, Max Planck Institute for Medical Research, Max Planck Society;
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93932

Kull,  F. Jon
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kliche, W., Fujita-Becker, S., Kollmar, M., Manstein, D. J., & Kull, F. J. (2001). Structure of a genetically engineered molecular motor. EMBO Journal, 20(1), 40-46. doi:10.1093/emboj/20.1.40.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-F097-4
Zusammenfassung
Molecular motors move unidirectionally along polymer tracks, producing movement and force in an ATP-dependent fashion. They achieve this by amplifying small conformational changes in the nucleotide-binding region into force-generating movements of larger protein domains. We present the 2.8 A resolution crystal structure of an artificial actin-based motor. By combining the catalytic domain of myosin II with a 130 A conformational amplifier consisting of repeats 1 and 2 of alpha-actinin, we demonstrate that it is possible to genetically engineer single-polypeptide molecular motors with precisely defined lever arm lengths and specific motile properties. Furthermore, our structure shows the consequences of mutating a conserved salt bridge in the nucleotide-binding region. Disruption of this salt bridge, which is known to severely inhibit ATP hydrolysis activity, appears to interfere with formation of myosin's catalytically active 'closed' conformation. Finally, we describe the structure of alpha-actinin repeats 1 and 2 as being composed of two rigid, triple-helical bundles linked by an uninterrupted alpha-helix. This fold is very similar to the previously described structures of alpha-actinin repeats 2 and 3, and alpha-spectrin repeats 16 and 17.