English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Confined Acid-Catalyzed Asymmetric Carbonyl-Ene Cyclization

MPS-Authors
/persons/resource/persons180741

Liu,  Luping
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons186078

Zheng,  Yiying
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58388

Alachraf,  M. Wasim
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

ja5b09484_si_001.pdf
(Supplementary material), 533KB

ja5b09484_si_003.pdf
(Supplementary material), 3MB

Citation

Liu, L., Leutzsch, M., Zheng, Y., Alachraf, M. W., Thiel, W., & List, B. (2015). Confined Acid-Catalyzed Asymmetric Carbonyl-Ene Cyclization. Journal of the American Chemical Society, 137(41), 13268-13271. doi:10.1021/jacs.5b09484.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-2E68-3
Abstract
A highly enantioselective Brønsted acid catalyzed intramolecular carbonyl–ene reaction of olefinic aldehydes has been developed. Using a confined imidodiphosphate catalyst, the reaction delivers diverse trans-3,4-disubstituted carbo- and heterocyclic five-membered rings in high yields and with good to excellent diastereo- and enantioselectivities. ESI-MS, NMR, and DFT mechanistic studies reveal that the reaction proceeds via a stepwise pathway involving a novel covalent intermediate.