Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Horizon entropy from quantum gravity condensates

MPG-Autoren
/persons/resource/persons20698

Oriti,  Daniele
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons59315

Pranzetti,  Daniele
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4297

Sindoni,  Lorenzo
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1510.06991.pdf
(Preprint), 462KB

1510.06991v2.pdf
(Preprint), 416KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Oriti, D., Pranzetti, D., & Sindoni, L. (2016). Horizon entropy from quantum gravity condensates. Physical Review Letters, 116: 211301. doi:10.1103/PhysRevLett.116.211301.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0028-FE66-4
Zusammenfassung
We construct condensate states encoding the continuum spherically symmetric quantum geometry of an isolated horizon in full quantum gravity, i.e. without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits an holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the isolated horizon boundary conditions and semi-classical thermodynamical properties, we recover the Bekenstein--Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.