Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

MPG-Autoren
/persons/resource/persons30321

Boll,  Rebecca
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany;
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons134689

Englert,  Lars
High Energy Astrophysics, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons136028

Epp,  Sascha W.
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons49162

Erk,  Benjamin
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany;
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons92933

Foucar,  Lutz
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons117794

Rolles,  Daniel
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany;
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society;
PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany;

/persons/resource/persons49160

Rudek,  Benedikt
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30960

Rudenko,  Artem
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
J.R. MacDonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA;

/persons/resource/persons31125

Ullrich,  Joachim H.
Max Planck Advanced Study Group at the Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany;
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.4933297.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tanyag, R. M. P., Bernando, C., Jones, C. F., Bacellar, C., Ferguson, K. R., Anielski, D., et al. (2015). Communication: X-ray coherent diffractive imaging by immersion in nanodroplets. Structural Dynamics, 2(5): 051102. doi:10.1063/1.4933297.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-05DF-1
Zusammenfassung
Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.