English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies.

MPS-Authors
/persons/resource/persons45923

Ryazanov,  S.
Department of NMR-based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15438

Leonov,  A.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15147

Griesinger,  C.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

2227894_Suppl.pdf
(Supplementary material), 505KB

Citation

Wagner, J., Krauss, S., Shi, S., Ryazanov, S., Steffen, J., Miklitz, C., et al. (2015). Reducing tau aggregates with anle138b delays disease progression in a mouse model of tauopathies. Acta Neuropathologica, 130(5), 619-631. doi:10.1007/s00401-015-1483-3.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-06FA-0
Abstract
Pathological tau aggregation leads to filamentous tau inclusions and characterizes neurodegenerative tauopathies such as Alzheimer's disease and frontotemporal dementia and parkinsonism linked to chromosome 17. Tau aggregation coincides with clinical symptoms and is thought to mediate neurodegeneration. Transgenic mice overexpressing mutant human P301S tau exhibit many neuropathological features of human tauopathies including behavioral deficits and increased mortality. Here, we show that the di-phenyl-pyrazole anle138b binds to aggregated tau and inhibits tau aggregation in vitro and in vivo. Furthermore, anle138b treatment effectively ameliorates disease symptoms, increases survival time and improves cognition of tau transgenic PS19 mice. In addition, we found decreased synapse and neuron loss accompanied by a decreased gliosis in the hippocampus. Our results suggest that reducing tau aggregates with anle138b may represent an effective and promising approach for the treatment of human tauopathies.