Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

MPG-Autoren
/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ncomms9625.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bergmann, A., Martinez-Moreno, E., Teschner, D., Chernev, P., Gliech, M., de Araújo, J. F., et al. (2015). Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 6(10): 8625. doi:10.1038/ncomms9625.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0A43-A
Zusammenfassung
Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co<sub>3</sub>O<sub>4</sub> electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co<sub>3</sub>O<sub>4</sub> is transformed into an X-ray amorphous CoO<sub>x</sub>(OH)<sub>y</sub> which comprises di-μ-oxo-bridged Co<sup>3+/4+</sup ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co<sub>3</sub>O<sub>4</sub> material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions.