Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

MPG-Autoren

Gehring,  Tobias
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40458

Händchen,  Vitus
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1406.6174.pdf
(Preprint), 3MB

ncomms9795.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gehring, T., Händchen, V., Duhme, J., Furrer, F., Franz, T., Pacher, C., et al. (2015). Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nature Communications, 6: 8795. doi:10.1038/ncomms9795.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0B1E-7
Zusammenfassung
Secret communication over public channels is one of the central pillars of a
modern information society. Using quantum key distribution (QKD) this is
achieved without relying on the hardness of mathematical problems which might
be compromised by improved algorithms or by future quantum computers.
State-of-the-art QKD requires composable security against coherent attacks for
a finite number of samples. Here, we present the first implementation of QKD
satisfying this requirement and additionally achieving security which is
independent of any possible flaws in the implementation of the receiver. By
distributing strongly Einstein-Podolsky-Rosen entangled continuous variable
(CV) light in a table-top arrangement, we generated secret keys using a highly
efficient error reconciliation algorithm. Since CV encoding is compatible with
conventional optical communication technology, we consider our work to be a
major promotion for commercialized QKD providing composable security against
the most general channel attacks.