English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks

MPS-Authors

Gehring,  Tobias
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40458

Händchen,  Vitus
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1406.6174.pdf
(Preprint), 3MB

ncomms9795.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Gehring, T., Händchen, V., Duhme, J., Furrer, F., Franz, T., Pacher, C., et al. (2015). Implementation of continuous-variable quantum key distribution with composable and one-sided-device-independent security against coherent attacks. Nature Communications, 6: 8795. doi:10.1038/ncomms9795.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-0B1E-7
Abstract
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution (QKD) this is achieved without relying on the hardness of mathematical problems which might be compromised by improved algorithms or by future quantum computers. State-of-the-art QKD requires composable security against coherent attacks for a finite number of samples. Here, we present the first implementation of QKD satisfying this requirement and additionally achieving security which is independent of any possible flaws in the implementation of the receiver. By distributing strongly Einstein-Podolsky-Rosen entangled continuous variable (CV) light in a table-top arrangement, we generated secret keys using a highly efficient error reconciliation algorithm. Since CV encoding is compatible with conventional optical communication technology, we consider our work to be a major promotion for commercialized QKD providing composable security against the most general channel attacks.