English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America

MPS-Authors
/persons/resource/persons101045

Kaiser,  J. W.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

van der Laan-Luijkx, I. T., van der Velde, I. R., Krol, M. C., Gatti, L. V., Domingues, L. G., Correia, C. S. C., et al. (2015). Response of the Amazon carbon balance to the 2010 drought derived with CarbonTracker South America. Global Biogeochemical Cycles, 29(7), 1092-1108. doi:10.1002/2014GB005082.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-28A3-F
Abstract
Two major droughts in the past decade had large impacts on carbon exchange in the Amazon. Recent analysis of vertical profile measurements of atmospheric CO2 and CO by Gatti et al. (2014) suggests that the 2010 drought turned the normally close-to-neutral annual Amazon carbon balance into a substantial source of nearly 0.5 PgC/yr, revealing a strong drought response. In this study, we revisit this hypothesis and interpret not only the same CO2/CO vertical profile measurements but also additional constraints on carbon exchange such as satellite observations of CO, burned area, and fire hot spots. The results from our CarbonTracker South America data assimilation system suggest that carbon uptake by vegetation was indeed reduced in 2010 but that the magnitude of the decrease strongly depends on the estimated 2010 and 2011 biomass burning emissions. We have used fire products based on burned area (Global Fire Emissions Database version 4), satellite-observed CO columns (Infrared Atmospheric Sounding Interferometer), fire radiative power (Global Fire Assimilation System version 1), and fire hot spots (Fire Inventory from NCAR version 1), and found an increase in biomass burning emissions in 2010 compared to 2011 of 0.16 to 0.24 PgC/yr. We derived a decrease of biospheric uptake ranging from 0.08 to 0.26 PgC/yr, with the range determined from a set of alternative inversions using different biomass burning estimates. Our numerical analysis of the 2010 Amazon drought results in a total reduction of carbon uptake of 0.24 to 0.50 PgC/yr and turns the balance from carbon sink to source. Our findings support the suggestion that the hydrological cycle will be an important driver of future changes in Amazonian carbon exchange.