English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels

MPS-Authors
/persons/resource/persons124404

Schwarz,  Martin K.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94704

Pawlak,  Verena
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94635

Osten,  Pavel
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons94171

Mack,  Volker
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93955

Köhr,  Georg
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Directly responsible to the Managing Director, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schwarz, M. K., Pawlak, V., Osten, P., Mack, V., Seeburg, P. H., & Köhr, G. (2001). Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels. European Journal of Neuroscience: European Neuroscience Association, 14(5), 861-868. doi:10.1046/j.0953-816x.2001.01705.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-2223-0
Abstract
Homomeric glutamate receptor (GluR) channels become spontaneously active when the last alanine residue within the invariant SYTANLAAF-motif in the third membrane segment is substituted by threonine. The same mutation in the orphan GluRdelta2 channel is responsible for neurodegeneration in "Lurcher" (Lc) mice. Since most native GluRs are composed of different subunits, we investigated the effect of an Lc-mutated subunit in heteromeric kainate and AMPA receptors expressed in HEK293 cells. Kainate receptor KA2 subunits, either wild type or carrying the Lc mutation (KA2(Lc)), are retained inside the cell but are surface-expressed when assembled with GluR6 subunits. Importantly, KA2(Lc) dominates the gating of KA2(Lc)/GluR6(WT) channels, as revealed by spontaneous activation and by slowed desensitization and deactivation kinetics of ligand-activated whole-cell currents. Moreover, the AMPA receptor subunit GluR-B(Lc)(Q) which forms spontaneously active homomeric channels with rectifying current-voltage relationships, dominates the gating of heteromeric GluR-B(Lc)(Q)/GluR-A(R) channels. The spontaneous currents of these heteromeric AMPAR channels show linear current-voltage relationships, and the ligand-activated whole-cell currents display slower deactivation and desensitization kinetics than the respective wild-type channels. For heteromeric Lc-mutated kainate and AMPA receptors, the effects on kinetics were reduced relative to the homomeric Lc-mutated forms. Thus, an Lc-mutated subunit can potentially influence heteromeric channel function in vivo, and the severity of the phenotype will critically depend on the levels of homomeric GluR(Lc) and heteromeric GluR(Lc)/GluR(WT) channels.