English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Exploring the automaticity of language-perception interactions: Effects of attention and awareness

MPS-Authors
/persons/resource/persons69

Hagoort,  Peter
Neurobiology of Language Department, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

srep17725.pdf
(Publisher version), 371KB

Supplementary Material (public)

srep17725-s1.pdf
(Supplementary material), 194KB

Citation

Francken, J. C., Meijs, E. L., Hagoort, P., van Gaal, S., & de Lange, F. P. (2015). Exploring the automaticity of language-perception interactions: Effects of attention and awareness. Scientific Reports, 5: 17725. doi:10.1038/srep17725.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-262E-B
Abstract
Previous studies have shown that language can modulate visual perception, by biasing and/
or enhancing perceptual performance. However, it is still debated where in the brain visual and
linguistic information are integrated, and whether the effects of language on perception are
automatic and persist even in the absence of awareness of the linguistic material. Here, we aimed
to explore the automaticity of language-perception interactions and the neural loci of these
interactions in an fMRI study. Participants engaged in a visual motion discrimination task (upward
or downward moving dots). Before each trial, a word prime was briefly presented that implied
upward or downward motion (e.g., “rise”, “fall”). These word primes strongly influenced behavior:
congruent motion words sped up reaction times and improved performance relative to incongruent
motion words. Neural congruency effects were only observed in the left middle temporal gyrus,
showing higher activity for congruent compared to incongruent conditions. This suggests that higherlevel
conceptual areas rather than sensory areas are the locus of language-perception interactions.
When motion words were rendered unaware by means of masking, they still affected visual motion
perception, suggesting that language-perception interactions may rely on automatic feed-forward
integration of perceptual and semantic material in language areas of the brain.