English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

MPS-Authors
/persons/resource/persons187681

Eichhorn,  Astrid
Climate Modelling, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37088

Bader,  Juergen
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

10.1007_s00382-016-3415-x.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Eichhorn, A., & Bader, J. (2017). Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study. Climate Dynamics, 49, 2061-2075. doi:10.1007/s00382-016-3415-x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0ABF-5
Abstract
As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.