English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate

MPS-Authors
/persons/resource/persons188241

Drosos,  Nikolaos
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145542

Morandi,  Bill
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Drosos, N., & Morandi, B. (2015). Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate. Angewandte Chemie International Edition, 54(30), 8814-8818. doi:10.1002/anie.201503172.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-72CA-D
Abstract
The selective deoxygenation of polyols is a frontier in our ability to harness the stereochemical and structural complexity of natural and synthetic feedstocks. Herein, we describe a highly active and selective boron-based catalytic system for the selective deoxygenation of terminal 1,2-diols at the primary position, a process that is enabled by the transient formation of a cyclic siloxane. The method provides an ideal complement to well-known catalytic asymmetric reactions to prepare synthetically challenging chiral 2-alkanols in nearly perfect enantiomeric excess, as illustrated in a short synthesis of the anti-inflammatory drug (R)-lisofylline.