English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate

MPS-Authors
/persons/resource/persons188241

Drosos,  Nikolaos
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons145542

Morandi,  Bill
Research Group Morandi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Drosos, N., & Morandi, B. (2015). Boron-Catalyzed Regioselective Deoxygenation of Terminal 1,2-Diols to 2-Alkanols Enabled by the Strategic Formation of a Cyclic Siloxane Intermediate. Angewandte Chemie International Edition, 54(30), 8814-8818. doi:10.1002/anie.201503172.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-72CA-D
Abstract
The selective deoxygenation of polyols is a frontier in our ability to harness the stereochemical and structural complexity of natural and synthetic feedstocks. Herein, we describe a highly active and selective boron-based catalytic system for the selective deoxygenation of terminal 1,2-diols at the primary position, a process that is enabled by the transient formation of a cyclic siloxane. The method provides an ideal complement to well-known catalytic asymmetric reactions to prepare synthetically challenging chiral 2-alkanols in nearly perfect enantiomeric excess, as illustrated in a short synthesis of the anti-inflammatory drug (R)-lisofylline.