Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus)

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Costantini, D., Casagrande, S., De Filippis, S., Brambilla, G., Fanfani, A., Tagliavini, J., et al. (2006). Correlates of oxidative stress in wild kestrel nestlings (Falco tinnunculus). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 176(4), 329-337. doi:10.1007/s00360-005-0055-6.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-2B4A-E
The fitness of an organism can be affected by conditions experienced during early development. In light of the impact that oxidative stress can have on the health and ageing of a bird species, this study evaluated factors accounting for the variation in oxidative stress levels in nestlings of the Eurasian kestrel (Falco tinnunculus) by measuring the serum concentration of reactive oxygen metabolites and the serum antioxidant barrier against hypochlorite-induced oxidation. The ratio between these two variables was considered as an index of oxidative stress, with higher values meaning higher oxidative damage. Six-chick broods showed the highest level of oxidative stress, while no effect of sex was found. Age showed an inverse relationship with the oxidants and the levels of oxidative stress, with younger birds having higher levels. Hatching date, body condition, body mass and carotenoid concentration did not show any relationship with oxidants, antioxidants or degree of oxidative stress. These findings suggest that intrabrood sibling competition could play a role in determining oxidative stress, and that in carnivorous birds other antioxidant molecules could be more important than carotenoids to reduce oxidative stress.