Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Total correlations of the diagonal ensemble herald the many-body localization transition

MPG-Autoren
/persons/resource/persons187744

Gogolin,  Christian
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
ICFO-The Institute of Photonic Sciences, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain;

Clark,  S. R.
Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom;
Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom;
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevB.92.180202.pdf
(Verlagsversion), 215KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Goold, J., Gogolin, C., Clark, S. R., Eisert, J., Scardicchio, A., & Silva, A. (2015). Total correlations of the diagonal ensemble herald the many-body localization transition. Physical Review B, 92(18): 180202(R). doi:10.1103/PhysRevB.92.180202.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-31A0-0
Zusammenfassung
The intriguing phenomenon of many-body localization (MBL) has attracted significant interest recently, but a complete characterization is still lacking. In this work we introduce the total correlations, a concept from quantum information theory capturing multipartite correlations, to the study of this phenomenon. We demonstrate that the total correlations of the diagonal ensemble provides a meaningful diagnostic tool to pin-down, probe, and better understand the MBL transition and ergodicity breaking in quantum systems. In particular, we show that the total correlations has sublinear dependence on the system size in delocalized, ergodic phases, whereas we find that it scales extensively in the localized phase developing a pronounced peak at the transition. We exemplify the power of our approach by means of an exact diagonalization study of a Heisenberg spin chain in a disordered field. By a finite size scaling analysis of the peak position and crossover point from log to linear scaling we collect evidence that ergodicity is broken before the MBL transition in this model.