English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal–Organic Chains

MPS-Authors
/persons/resource/persons79433

Calaza,  Florencia
Chemical Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22140

Sterrer,  Martin
Chemical Physics, Fritz Haber Institute, Max Planck Society;
Institute of Physics, University of Graz;

/persons/resource/persons21524

Freund,  Hans-Joachim
Chemical Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Feng, M., Petek, H., Shi, Y., Sun, H., Zhao, J., Calaza, F., et al. (2015). Cooperative Chemisorption-Induced Physisorption of CO2 Molecules by Metal–Organic Chains. ACS Nano, 9(12), 12124-12136. doi:10.1021/acsnano.5b05222.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-3B7A-3
Abstract
Effective CO2 capture and reduction can be achieved through a molecular scale understanding of interaction of CO2 molecules with chemically active sites and the cooperative effects they induce in functional materials. Self-assembled arrays of parallel chains composed of Au adatoms connected by 1,4-phenylene diisocyanide (PDI) linkers decorating Au surfaces exhibit self-catalyzed CO2 capture leading to large scale surface restructuring at 77 K (ACS Nano 2014, 8, 8644–8652). We explore the cooperative interactions among CO2 molecules, Au-PDI chains and Au substrates that are responsible for the self-catalyzed capture by low temperature scanning tunneling microscopy (LT-STM), X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectroscopy (IRAS), temperature-programmed desorption (TPD), and dispersion corrected density functional theory (DFT). Decorating Au surfaces with Au-PDI chains gives the interfacial metal–organic polymer characteristics of both a homogeneous and heterogeneous catalyst. Au-PDI chains activate the normally inert Au surfaces by promoting CO2 chemisorption at the Au adatom sites even at <20 K. The CO2δ− species coordinating Au adatoms in-turn seed physisorption of CO2 molecules in highly ordered two-dimensional (2D) clusters, which grow with increasing dose to a full monolayer and, surprisingly, can be imaged with molecular resolution on Au crystal terraces. The dispersion interactions with the substrate force the monolayer to assume a rhombic structure similar to a high-pressure CO2 crystalline solid rather than the cubic dry ice phase. The Au surface supported Au-PDI chains provide a platform for investigating the physical and chemical interactions involved in CO2 capture and reduction.