English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Simple Nuclear Structure in 111–129Cd from Atomic Isomer Shifts

MPS-Authors
/persons/resource/persons31201

Yordanov,  Deyan T.
Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay;
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
CERN European Organization for Nuclear Research, Physics Department;

/persons/resource/persons30312

Blaum,  Klaus
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30722

Kreim,  Susanne Waltraud
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;

Neugart,  R.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Institut für Kernchemie, Johannes Gutenberg-Universität Mainz;

Nörtershäuser,  W.
Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society;
Institut fur Kernphysik, Technische Universität Darmstadt;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Yordanov, D. T., Balabanski, D., Bissell, M., Blaum, K., Budinčević, I., Cheal, B., et al. (2016). Simple Nuclear Structure in 111–129Cd from Atomic Isomer Shifts. Physical Review Letters, 116(3): 032501. doi:10.1103/PhysRevLett.116.032501.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-7DEB-2
Abstract
Isomer shifts have been determined in Cd111–129 by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2+ and the 3/2+ ground states to the 11/2 isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction with the known quadrupole moments. This intuitive interpretation is supported by covariant density functional theory.