Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Curvotaxis and pattern formation in the actin cortex of motile cells

MPG-Autoren
/persons/resource/persons173471

Blum,  Christoph
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Blum, C. (2015). Curvotaxis and pattern formation in the actin cortex of motile cells. PhD Thesis, Georg-August Universität, Göttingen.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0029-6C32-D
Zusammenfassung
Amoeboid cell migration is a crucial part of life. Neutrophil granulocytes, a kind of phagocytes of the mammalian immune system, migrate from blood vessels through tissue towards spots of inflammation. To find this inflammation, they use a chemical “compass” that contains a system to receive and process a chemical signal that guides the neutrophil to the inflammation by leading it towards higher concentration of a chemoattractant molecule. This process is known as chemotaxis, plays also major role is cancer metastasis. The social amoeba Dictyostelium discoideum (D.d.) is a commonly used model organism to study migration as well as chemotaxis. In this study the cell migration of D.d. was investigated within the concept of chemotaxis as well as regarding the geometrical environment of the cells. Here it was found that cells prefere to migrate along paths of high curvature. Hence this finding was called “Curvotaxis”. The open question of a temporal shift between the signalling molecule Ras-G the actin polymerization and the forming of pseudopods was solved by the finding the Ras-G was visible before actin and the propulsion.