English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Functional resilience against climate-driven extinctions - comparing the functional diversity of European and North American tree floras

MPS-Authors
/persons/resource/persons101551

Stahl,  Ulrike
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62433

Kattge,  Jens
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62606

Wirth,  Christian
Interdepartmental Max Planck Fellow Group Functional Biogeography, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2392.pdf
(Publisher version), 3MB

BGC2392s1.zip
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Liebergesell, M., Reu, B., Stahl, U., Freiberg, M., Welk, E., Kattge, J., et al. (2016). Functional resilience against climate-driven extinctions - comparing the functional diversity of European and North American tree floras. PLoS One, 11(2): e0148607. doi:10.1371/journal.pone.0148607.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7351-6
Abstract
Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning.