English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Investigating neuroanatomical features in top athletes at the single subject level

MPS-Authors
/persons/resource/persons20042

Taubert,  Marco
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19617

Draganski,  Bogdan
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Département des Neurosciences Cliniques, Laboratoire de Recherche en Neuroimagerie (LREN), Centre hospitalier universitaire vaudois, Lausanne, Switzerland;

/persons/resource/persons19770

Kiebel,  Stefan J.
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Psychology, Neuroimaging Center, TU Dresden, Germany;

/persons/resource/persons19935

Ragert,  Patrick
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Institute of General Kinesiology and Athletics Training, University of Leipzig, Germany;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)

taubert_2015.pdf
(Publisher version), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Taubert, M., Wenzel, U., Draganski, B., Kiebel, S. J., Ragert, P., Krug, J., et al. (2015). Investigating neuroanatomical features in top athletes at the single subject level. PLoS One, 10(6): e0129508. doi:10.1371/journal.pone.0129508.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-78DD-A
Abstract
In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual’s performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete’s brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes’ persistency to reach top-level skill performance over years.