English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Location of the H atoms in ammonium persulphate by deuteron NMR. Verification by X-ray diffraction

MPS-Authors
/persons/resource/persons118611

Schmidt,  Thorsten
Research Group Prof. Dr. Haeberlen, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons124401

Schmitt,  Heike
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons128263

Zimmermann,  Herbert
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93258

Haeberlen,  Ulrich
Research Group Prof. Dr. Haeberlen, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schmidt, T., Schmitt, H., Zimmermann, H., Haeberlen, U., Lalowicz, Z. T., Olejniczak, Z., et al. (2002). Location of the H atoms in ammonium persulphate by deuteron NMR. Verification by X-ray diffraction. Acta Crystallographica Section B, 58(5), 760-769. doi:10.1107/S0108768102011199.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7964-0
Abstract
It is demonstrated that H atoms can be located by the spectroscopic method of deuteron NMR. The requirement is that the 'heavy-atom' positions are known from diffraction studies. The technique allows an accuracy of the order of 0.01 A. The compound studied is ammonium persulphate (APS), (NH(4))(2)S(2)O(8). APS crystallizes in space group P2(1)/n with lattice parameters a = 6.1340 (2), b = 7.9324 (3), c = 7.7541 (3) A and beta = 94.966 (1) degrees at T = 118 K. In perdeuterated crystals of APS, only one of the deuterons of every ND(4)(+) ion becomes localized at low temperatures. Therefore, most of this work uses samples with 9% deuteration. In such crystals, most of the ammonium ions containing deuterons come in the form of NDH(3)(+) ions. At T < 25 K, the single deuteron of these ions becomes localized in one of four equilibrium sites. The deuteron site occupancies differ from each other and are measured at 17 K. The deuterons are located in three steps. (i) The deuteron quadrupole-coupling (QC) tensors are measured at 17 K. Their unique principal directions are identified, as is well justified, with the N-D bond directions. (ii) The fine structure of a deuteron NMR line is analyzed in terms of the magnetic dipole-dipole interactions between all nuclei in an NDH(3)(+) ion to obtain the N-D and D-H internuclear distances. (iii) An empirical relation between deuteron QC constants and D.O distances in N-D.O hydrogen bonds is exploited to assign the N-D bond vectors to the appropriate N atom of which there are four in the unit cell. The results are highly relevant for an understanding of the complex tunnelling and stochastic reorientation dynamics of the ammonium ions in APS. They are verified by a complementary X-ray diffraction study.