English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High speed dynamic clamp interface

MPS-Authors
/persons/resource/persons173448

Neef,  Andreas
Research Group Theoretical Neurophysics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Yang, Y., Adowski, T. R., Ramamurthy, B., Neef, A., & Xu-Friedman, M. A. (2015). High speed dynamic clamp interface. Journal of Neurophysiology, 113(7), 2713-2720. doi:10.1152/jn.00543.2014.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-A8A9-E
Abstract
The dynamic-clamp technique is highly useful for mimicking synaptic or voltage-gated conductances. However, its use remains rare in part because there are few systems, and they can be expensive and difficult for less-experienced programmers to implement. Furthermore, some conductances (such as sodium channels) can be quite rapid, or may have complex voltage sensitivity, so high speeds are necessary. To address these issues, we have developed a new interface that uses a common PC platform with National Instruments data acquisition, and Wavemetrics Igor to provide a simple user interface. This dynamic clamp implements leak and linear synaptic conductances, as well as a voltage-dependent synaptic conductance and kinetic channel conductances based on Hodgkin-Huxley or Markov models. The speed of the system can be assayed using a testing mode, and currently speeds of over 100 kHz (10 µs/cycle) are achievable, with short latency and little jitter.