English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Using executive control training to suppress amygdala reactivity to aversive information

MPS-Authors
/persons/resource/persons19840

Margulies,  Daniel S.
Max Planck Research Group Neuroanatomy and Connectivity, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19962

Schäfer,  Alexander
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Electrical and Computer Engineering, Clinical Imaging Research Centre & Singapore Institute for Neurotechnology, National University of Singapore;

/persons/resource/persons20042

Taubert,  Marco
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cohen, N., Margulies, D. S., Ashkenazi, S., Schäfer, A., Taubert, M., Henik, A., et al. (2016). Using executive control training to suppress amygdala reactivity to aversive information. NeuroImage, 125, 1022-1031. doi:10.1016/j.neuroimage.2015.10.069.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-7A95-9
Abstract
The ability to regulate emotions is essential for adaptive behavior. This ability is suggested to be mediated by the connectivity between prefrontal brain regions and the amygdala. Yet, it is still unknown whether the ability to regulate emotions can be trained by using a non-emotional procedure, such as the recruitment of executive control (EC). Participants who were trained using a high-frequent executive control (EC) task (80% incongruent trials) showed reduced amygdala reactivity and behavioral interference of aversive pictures. These effects were observed only following multiple-session training and not following one training session. In addition, they were not observed for participants exposed to low-frequent EC training (20% incongruent trials). Resting-state functional connectivity analysis revealed a marginally significant interaction between training group and change in the connectivity between the amygdala and the right inferior frontal gyrus (IFG). Amygdala–IFG connectivity was significantly increased following the training only in the high-frequent EC training group. These findings are the first to show that non-emotional training can induce changes in amygdala reactivity to aversive information and alter amygdala–prefrontal connectivity.