English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Clouds resolved

MPS-Authors
/persons/resource/persons173472

Bodenschatz,  E.       
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bodenschatz, E. (2015). Clouds resolved. Science, 350(6256), 40-41. doi:10.1126/science.aad1386.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7B47-2
Abstract
The pillowing structure and filamentary detail of clouds has inspired many paintings as well as associations to down pillows. Turbulence is at the source of this beauty. It affects aerosol-cloud droplet interaction, cloud particle collisions and merging, and entrainment and mixing of environmental air with clouds (1, 2). These microphysical processes are important for predicting weather and climate (3). Yet it has remained very difficult to observe clouds at the temporal and spatial scales required to gain understanding of these processes. On page 87 of this issue, Beals et al. (4) show that the filamentary structure of entrainment and mixing reaches to the centimeter scale in a cloud.