Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Flow-driven waves and phase-locked self-organization in quasi-one-dimensional colonies of Dictyostelium discoideum

MPG-Autoren
/persons/resource/persons173518

Gholami,  A.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173720

Zykov,  V.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  E.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gholami, A., Steinbock, O., Zykov, V., & Bodenschatz, E. (2015). Flow-driven waves and phase-locked self-organization in quasi-one-dimensional colonies of Dictyostelium discoideum. Physical Review Letters, 114(1): 018103. doi:10.1103/PhysRevLett.114.018103.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-7DBC-A
Zusammenfassung
We report experiments on flow-driven waves in a microfluidic channel containing the signaling slime mold Dictyostelium discoideum. The observed cyclic adenosine monophosphate (cAMP) wave trains developed spontaneously in the presence of flow and propagated with the velocity proportional to the imposed flow velocity. The period of the wave trains was independent of the flow velocity. Perturbations of flow-driven waves via external periodic pulses of the signaling agent cAMP induced 1:1, 2:1, 3:1, and 1:2 frequency responses, reminiscent of Arnold tongues in forced oscillatory systems. We expect our observations to be generic to active media governed by reaction-diffusion-advection dynamics, where spatially bound autocatalytic processes occur under flow conditions.