English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy

MPS-Authors
/persons/resource/persons95533

Stumber,  Michael
Research Group Prof. Dr. Haeberlen, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93074

Geyer,  Matthias
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93660

Kalbitzer,  Hans Robert
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95148

Scheffzek,  Klaus
Emeritus Group Biophysics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93258

Haeberlen,  Ulrich
Research Group Prof. Dr. Haeberlen, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stumber, M., Geyer, M., Graf, R., Kalbitzer, H. R., Scheffzek, K., & Haeberlen, U. (2002). Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy. Journal of Molecular Biology (London), 323(5), 899-907. doi:10.1016/S0022-2836(02)01010-0.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7C1C-B
Abstract
The folding, structure and biological function of many proteins are inherently dynamic properties of the protein molecule. Often, the respective molecular processes are preserved upon protein crystallization, leading, in X-ray diffraction experiments, to a blurring of the electron density map and reducing the resolution of the derived structure. Nuclear magnetic resonance (NMR) is known to be an alternative method to study molecular structure and dynamics. We designed and built a probe for phosphorus solid state NMR that allows for the first time to study static properties as well as dynamic processes in single-crystals of a protein by NMR spectroscopy. The sensitivity achieved is sufficient to detect the NMR signal from individual phosphorus sites in a 0.3mm(3) size single-crystal of GTPase Ras bound to the nucleotide GppNHp, that is, the signal from approximately 10(15) phosphorus nuclei. The NMR spectra obtained are discussed in terms of the conformational variability of the active center of the Ras-nucleotide complex. We conclude that, in the crystal, the protein complex exists in three different conformations. Magic angle spinning (MAS) NMR spectra of a powder sample of Ras-GppNHp show a splitting of one of the phosphate resonances and thus confirm this conclusion. The MAS spectra provide, furthermore, evidence of a slow, temperature-dependent dynamic exchange process in the Ras protein crystal.