Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations

MPG-Autoren
/persons/resource/persons86253

Benner,  Peter
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons180511

Khoromskaia,  Venera
Computational Methods in Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Max Planck Institute for Mathematics in the Sciences, Leipzig;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1505.02696.zip
(Preprint), 245KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benner, P., Khoromskaia, V., & Khoromskij, B. N. (2016). A Reduced Basis Approach for Calculation of the Bethe-Salpeter Excitation Energies by using Low-Rank Tensor Factorisations. Molecular Physics, 114(7-8), 1148-1161. doi:10.1080/00268976.2016.1149241.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0029-7F46-D
Zusammenfassung
The Bethe-Salpeter equation (BSE) is a reliable model for estimating the absorption spectra in molecules and solids on the basis of accurate calculation of the excited states from first principles. This challenging task includes calculation of the BSE operator in terms of two-electron integrals tensor represented in molecular orbital basis, and introduces a complicated algebraic task of solving the arising large matrix eigenvalue problem. The direct diagonalization of the BSE matrix is practically intractable due to $O(N^6)$ complexity scaling in the size of the atomic orbitals basis set, $N$. In this paper, we present a new approach to the computation of Bethe-Salpeter excitation energies which can lead to relaxation of the numerical costs up to $O(N^3)$. The idea is twofold: first, the diagonal plus low-rank tensor approximations to the fully populated blocks in the BSE matrix is constructed, enabling easier partial eigenvalue solver for a large auxiliary system relying only on matrix-vector multiplications with rank-structured matrices. And second, a small subset of eigenfunctions from the auxiliary eigenvalue problem is selected to build the Galerkin projection of the exact BSE system onto the reduced basis set. We present numerical tests on BSE calculations for a number of molecules confirming the $\varepsilon$-rank bounds for the blocks of BSE matrix. The numerics indicates that the reduced BSE eigenvalue problem with small matrices enables calculation of the lowest part of the excitation spectrum with sufficient accuracy.