English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Medial prefrontal cortex predicts internally driven strategy shifts

MPS-Authors
/persons/resource/persons19699

Haynes,  John-Dylan
Bernstein Center for Computational Neuroscience, Berlin, Germany;
Max Planck Fellow Research Group Attention and Awareness, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Department of Neurology, Otto von Guericke University Magdeburg, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schuck, N. W., Gaschler, R., Wenke, D., Heinzle, J., Frensch, P. A., Haynes, J.-D., et al. (2015). Medial prefrontal cortex predicts internally driven strategy shifts. Neuron, 86(1), 331-340. doi:10.1016/j.neuron.2015.03.015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-7FE1-2
Abstract
Many daily behaviors require us to actively focus on the current task and ignore all other distractions. Yet, ignoring everything else might hinder the ability to discover new ways to achieve the same goal. Here, we studied the neural mechanisms that support the spontaneous change to better strategies while an established strategy is executed. Multivariate neuroimaging analyses showed that before the spontaneous change to an alternative strategy, medial prefrontal cortex (MPFC) encoded information that was irrelevant for the current strategy but necessary for the later strategy. Importantly, this neural effect was related to future behavioral changes: information encoding in MPFC was changed only in participants who eventually switched their strategy and started before the actual strategy change. This allowed us to predict spontaneous strategy shifts ahead of time. These findings suggest that MPFC might internally simulate alternative strategies and shed new light on the organization of PFC.