English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Neural Mechanisms for Drosophila Contrast Vision

MPS-Authors
/persons/resource/persons59233

Bahl,  Armin
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons49137

Serbe,  Etienne
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons49139

Meier,  Matthias
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons98401

Ammer,  Georg
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38770

Borst,  Alexander
Department: Circuits-Computation-Models / Borst, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bahl, A., Serbe, E., Meier, M., Ammer, G., & Borst, A. (2015). Neural Mechanisms for Drosophila Contrast Vision. NEURON, 88(6), 1240-1252. doi:10.1016/j.neuron.2015.11.004.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-AC97-0
Abstract
Spatial contrast, the difference in adjacent luminance values, provides information about objects, textures, and motion and supports diverse visual behaviors. Contrast computation is therefore an essential element of visual processing. The underlying mechanisms, however, are poorly understood. In human psychophysics, contrast illusions are means to explore such computations, but humans offer limited experimental access. Via behavioral experiments in Drosophila, we find that flies are also susceptible to contrast illusions. Using genetic silencing techniques, electrophysiology, and modeling, we systematically dissect the mechanisms and neuronal correlates underlying the behavior. Our results indicate that spatial contrast computation involves lateral inhibition within the same pathway that computes motion of luminance increments (ON pathway). Yet motion-blind flies, in which we silenced downstream motion-sensitive neurons needed for optomotor behavior, have fully intact contrast responses. In conclusion, spatial contrast and motion cues are first computed by overlapping neuronal circuits which subsequently feed into parallel visual processing streams.