English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Stiff polyimides: Chain orientation and anisotropy of the optical and dielectric properties of thin films

MPS-Authors
/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Boese, D., Herminghaus, S., Yoon, D. Y., Swalen, J. D., & Rabolt, J. F. (1991). Stiff polyimides: Chain orientation and anisotropy of the optical and dielectric properties of thin films. In D. T. Grubb, I. Mita, & D. Y. Yoon (Eds.), Symposium J - Materials Science of High Temperature Polymers for Microelectronics (pp. 379-379).


Cite as: http://hdl.handle.net/11858/00-001M-0000-0029-B5DC-4
Abstract
Thin films of poly(p-phenylene biphenyltetracarboximide), prepared by thermal imidization of the precursor poly(amic acid) on substrates, have been investigated by optical waveguide, UV-visible, infrared (IR), and dielectric spectroscopies. The polyimide films exhibit an extraordinarily large anisotropy in the refractive indices with the in-plane index n║ = 1.852 and the out-of-plane index n┴ = 1.612 at 632.8 nm wavelength, indicating a strong preference of polymer chains to orient along the film plane. No discernible effect of the film thickness on this optical anisotropy is found in the range of ca. 0.4 μm to 7.8 μm in thickness. The frequency dispersion of the in-plane refractive index to 1.06 μm wavelength is consistent with the results calculated by the Lorentz-Lorenz equation from the UV-visible spectrum. The contribution from the entire IR range from 7000 to 200 cm,−1 computed by the Spitzer-Kleinmann dispersion relations from the measured spectra, adds ca. 0.07 to the in-plane refractive index n║. Approximately the same increase is assumed for the out-of-plane index n┴, based on the tilt-angle dependent IR results. Application of the Maxwell relation leads to the out-of-plane dielectric constant ε┴≃2.8 at ca. 1013 Hz, as compared with the measured value of ca. 3.0 at 106 Hz. Assuming this small difference to remain the same for the in-plane dielectric constants ε║, we obtain a a very large anisotropy in the dielectric properties of these polyimide films with the estimated in-plane dielectric constant ε║≃3.5 at ca. 1013 Hz, and ε.≃3.7 at 106 Hz.