English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evolution of mud-crack patterns during repeated drying cycles

MPS-Authors
/persons/resource/persons173520

Goehring,  Lucas
Group Pattern formation in the geosciences, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Goehring, L., Conroy, R., Akhter, A., Clegg, W. J., & Routh, A. F. (2010). Evolution of mud-crack patterns during repeated drying cycles. Soft Matter, 6(15), 3562-3567. doi:10.1039/B922206E.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0029-B504-8
Abstract
In mud, crack patterns are frequently seen with either an approximately rectilinear or hexagonal tiling. Here we show, experimentally, how a desiccation crack pattern changes from being dominated by 90° joint angles, to 120° joint angles. Layers of bentonite clay, a few mm thick, were repeatedly wetted and dried. When dried, the layers crack. These cracks visibly close when rewetted, but a similar crack pattern forms when the layer is redried, with cracks forming along the lines of previously open cracks. Time-lapse photography was used to show how the sequence in which individual cracks open is different in each generation of drying. The geometry of the crack pattern was observed after each of 25 generations of wetting and drying. The angles between cracks were found to approach 120°, with a relaxation time of approximately 4 generations. This was accompanied by a gradual change in the position of the crack vertices, as the crack pattern evolved. A simple model of crack behavior in a layer where the positions of previously open cracks define lines of weakness is developed to explain these observations.