Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Demonstrating universal scaling for dynamics of Yukawa one-component plasmas after an interaction quench

MPG-Autoren
/persons/resource/persons184856

Pohl,  T.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Langin, T. K., Strickler, T., Maksimovic, N., McQuillen, P., Pohl, T., Vrinceanu, D., et al. (2016). Demonstrating universal scaling for dynamics of Yukawa one-component plasmas after an interaction quench. Physical Review E, 93(2), 3201-3201.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0029-B68D-C
Zusammenfassung
The Yukawa one-component plasma (OCP) model is a paradigm for describing plasmas that contain one component of interest and one or more other components that can be treated as a neutralizing, screening background. In appropriately scaled units, interactions are characterized entirely by a screening parameter, kappa. As a result, systems of similar kappa show the same dynamics, regardless of the underlying parameters (e.g., density and temperature). We demonstrate this behavior using ultracold neutral plasmas (UNPs) created by photoionizing a cold (T <= 10 mK) gas. The ions in UNP systems are well described by the Yukawa model, with the electrons providing the screening. Creation of the plasma through photoionization can be thought of as a rapid quench of the interaction potential from kappa = infinity to a final kappa value set by the electron density and temperature. We demonstrate experimentally that the postquench dynamics are universal in. over a factor of 30 in density and an order of magnitude in temperature. Results are compared with molecular-dynamics simulations. We also demonstrate that features of the postquench kinetic energy evolution, such as disorder-induced heating and kinetic-energy oscillations, can be used to determine the plasma density and the electron temperature.